

Behovsberäkning i Christine-GIS

I det här exemplet är avsikten att visa hur man kan beräkna behovet av fosfor enligt jordanalysdata från en markkartering. Vi använder här ett enkelt kartprogram, Christine-GIS (<u>www.christine-gis.com</u>). Ett alternativ är att använda Precisionskalkylen i som tagits fram för Greppa näringens precisionsodlingsmodul (se vidare <u>www.agrovast.se/precision/greppa</u>)

Instruktion steg för steg

- 1. Öppna Christine-GIS
- 2. Högerklicka på View i projektfönstret och välj New View.
- 3. Tryck på plusknappen för att lägga till data.

4. Navigera till mappen testdata/punkthantering (bör finnas i samma mapp där du installerade PWiz) och lägg till Soilsamples.shp och Poly15rt.shp

Ändra uppritning av kartlager (themes - teman)

Här beskrivs några grundläggande funktioner för hur man kan ändra t ex symboler och färger för kartlagren. Detta är dock inget man behöver göra för att skapa styrfiler.

Den som bara vill göra en behovsberäkning kan hoppa över denna sida.

Ändra kartlagrets egenskaper

Genom att klicka på ett kartlager i teckenförklaringen kan göra det valt eller "aktivt". Det ser då upphöjt ut. Kartlagren ritas nedifrån och uppåt. Man kan flytta ett kartlager i teckenförklaringen genom att dra med muspilen.

För att ändra hur ett kartlager ritas upp högerklickar man på kartlagret i teckenförklaringen och väljer Properties (Egenskaper). Här finns flera flikar med olika möjligheter till inställningar för färger, symbolstorlekar, klassificering i intervall, etikettsättning mm.

Theme Properties	? 🛛
General Display Text La	abel Map Tips Point Symbol
Name:	soilsamples.shp
Classification Options:	Single Symbol
Description:	Show Legend
Type: ESRI(TM) Shapefil Shape Type: Point	e
<	
🔲 Use In Overview	🔲 Read Only
🔲 Spatial Index	CEM Conversion
OK	Avbryt Hjälp

Här visas hur fönstret Theme Properties ser ut för soilsamples.shp

Klassindelning

I figuren har följande gjorts:

I fliken General har Intervals valts. Vid detta val kommer det upp en ny flik som heter Intervals (figuren till höger). Här har vi valt att klassificera P-AL och ändrat klassindelning manuellt och även ändrat färger och symbolstorlek (dubbelklicka på symbolen för att ändra färg och symbol).

Theme Pro	perties			? 🗙
General D	isplay Text L	abel Map Ti	ps Intervals	
Numeric Fi	ield: Nu	mber of Classe	s:	
P_AL	•	5 🗄	Color <u>R</u> ar	
Symbol	From	To	Label	
0	5.3	6.0	< 6	14
•	6.0	8.0	6-8	
0	8.0	10.0	8 - 10	
•	10.0	12.0	10 - 12	
	OK	Α	vbryt H	jälp

5. Gör kartlagret soilsamples aktivt och klicka i menyn på Theme/Table för att öppna tabellen som hör till kartlagret soilsamples (kallas attributtabellen).

🗶 Christine GIS - [Attr	ribu	ites of soils	amples.shp]									
Application Project T	able	<u>E</u> dit <u>F</u> ield	<u>W</u> indow <u>H</u> el	р								- 8 ×
	0		<u>7</u> 4 4		8							
- Z Project.cri		Х	Y	PH	P_AL	P_HCL	K_AL	K_HCL	MG_AL	CU_HCL	SOM	
Tiews	Þ	1343087.0	6461977.0	6.4	14.3	109	9.5	97	3.8	8.6	2.3	
🛨 🎘 Tables		1343073.0	6461918.0	6.4	9.1	69	10.2	144	5.1	8.4	2.1	
Scripts		1343062.0	6461856.0	6.6	7.9	69	9.5	163	6.0	9.0	1.7	
		1343048.0	6461788.0	6.7	7.1	68	9.2	153	6.6	7.3	2.5	
		1343039.0	6461733.0	6.3	5.3	58	8.2	141	7.3	6.2	2.5	
		1343025.0	6461676.0	6.6	5.9	55	8.7	214	14.1	8.7	2.5	
		1343016.0	6461619.0	6.4	8.8	59	7.9	84	4.1	4.7	2.1	
		1342943.0	6461633.0	6.4	9.2	70	13.7	191	15.8	6.4	4.5	
		1342957.0	6461706.0	6.6	6.1	50	11.4	177	11.6	5.8	2.5	
		1342973.0	6461779.0	6.3	6.9	54	9.8	133	9.2	5.2	1.5	
		1342986.0	6461854.0	6.5	8.1	57	10.9	161	9.3	6.8	2.4	
		1343002.0	6461925.0	6.6	8.6	55	7.7	115	5.4	5.8	1.8	_
		1343014.0	6461989.0	6.4	10.3	63	6.9	59	3.5	5.5	2.0	
		1342923.0	6462005.0	6.2	10.5	64	5.1	30	2.5	4.1	1.0	
	N	1040007.0	C4C1040.0	10	10.0	50	2.0	40	2.0	0.5		

Vi ser att det finns analysdata från en markkartering i tabellen. En rad (*record*) per provpunkt. En kolumn, benämns också fält – *field* (inte att förväxla med ett skifte...), per analysvärde. Vi ska nu lägga till en ny kolumn och i den ska vi beräkna fosforbehovet.

6. Tryck i menyn på Edit/Add field för att få upp ett fönster som heter Field Definition. Där fyller du i Name = Pbehov, väljer vilken typ av data som kolumnen ska innehålla: Type = Number, anger hur många tecken det ska gå att skriva i kolumnen: Width = 3 (det bör räcka med 3 tecken eftersom fosforbehovet säkerligen ligger på mellan 0-999). Några decimaler behövs inte så vi anger Decimal Places = 0 (om man hade velat ha 1 decimal på fosforbehovet hade man behövt sätta Width = 5 eftersom decimalen tar upp en position och kommatecknet även tar upp en position).

Så här ser det ut:

7. Tryck sedan på OK för att lägga till den nya kolumnen.

Nästa steg är att räkna ut fosforbehovet i den nya kolumnen. På nästa sida beskrivs bakgrunden till den beräkning som vi kommer att göra. Om du inte vill sätta dig in i det kan du hoppa över den sidan.

Behovsberäkning av P och K

Rekommendationerna för P- och K-behov skiljer sig åt en aning beroende på om man följer Jordbruksverket, Hushållningssällskapet eller t ex Lantmännen. Emellertid baseras behovet normalt på analysvärdet vid markkartering (P-AL eller K-AL) och den förväntade skördens storlek. I vårt exempel ska vi anta att det är stråsäd som behovet ska beräknas för. Vi använde här rekommendationer som fanns i Lantmännens Växtodlaren 2004.

Om man tittar på hur behovsangivelsen ser ut i Växtodlaren (till höger i figuren nedan) så ser man att det går att läsa av ett P-behov för en viss skörd och ett visst P-AL-tal. Detta ger upphov till en stegvis förändring av P-behov när man kommer över i en annan del av tabellen. Det fungerar bra när man jobbar med enhetliga givor och jämna givor över hela skiftet. Om vi önskar sprida varierat har vi dock möjlighet att använda mer exakta värden, tanken är ju att man ska kunna variera värdena kontinuerligt när man åker över skiftet. Därför har vi räknat om värdena i den traditionella tabellen till en linjär kurva, där P-behovet ändras direkt efter ändringar i P-AL och skörd.

Detta ger upphov till en enklare, steglös beräkning för varje enskilt markkarteringsvärde. Som man kan se i figuren nedan ser ekvationen för P-behov ut så här:

P-behov = (-2,3 * P-AL) + (37,25 - ((5 - Skörd) * 2,5))

där skörd är den förväntade skörden i ton/ha och P-AL är P-AL-talet i mg P / 100 g jord.

Om du vill räkna ut behovet på något annat sätt ersätter du de föreslagna ekvationerna med andra siffror.

4

8. Klicka en gång på fältnamnet Pbehov så öppnas en meny där du väljer Calculate:

	X	Y	PH	P_AL	P_HCL	K_AL	K_HCL	MG_AL	CU_HCL	SOM	Pbehov 🔼
	1343087.0	6461977.0	6.4	14.3	109	9.5	97	3.8	8.6	2.3	Sort Ascending
	1343073.0	6461918.0	6.4	9.1	69	10.2	144	5.1	8.4	2.1	Sort Descending
	1343062.0	6461856.0	6.6	7.9	69	9.5	163	6.0	9.0	1.7	
	1343048.0	6461788.0	6.7	7.1	68	9.2	153	6.6	7.3	2.5	Calculate
	1343039.0	6461733.0	6.3	5.3	58	8.2	141	7.3	6.2	2.5	Statistic
	1343025.0	6461676.0	6.6	5.9	55	8.7	214	14.1	8.7	2.5	
Þ	1343016.0	6461619.0	6.4	8.8	59	7.9	84	4.1	4.7	2.1	Delete Field
	1342943.0	6461633.0	6.4	9.2	70	13.7	191	15.8	6.4	4.5	Rename Field
	1342957.0	6461706.0	6.6	6.1	50	11.4	177	11.6	5.8	2.5	
	1342973.0	6461779.0	6.3	6.9	54	9.8	133	9.2	5.2	1.5	Properties
	1342986.0	6461854.0	6.5	8.1	57	10.9	161	9.3	6.8	2.4	0
	1343002.0	6461925.0	6.6	8.6	55	7.7	115	5.4	5.8	1.8	0
N 1				·							

Här finns möjlighet att skriva in formler som kan bestå av matematiska beräkningar och där man dessutom kan använda värden från tabellen i beräkningen. Här ska vi basera fosforbehovet på P-AL-talet i respektive provpunkt. Vi ska anta att den förväntade skörden ska bli 6 ton/ha.

9. Knappa in följande Pbehov = (-2.3 * [P_AL]) + (37.25 - ((5-6)*2.5));

- Använd punkt i stället för komma som decimalavgränsare.
- [P_AL] behöver du inte skriva in utan kan dubbelklicka i listan med kolumnnamn
- Avsluta raden med semikolon för att tala om för programmet att du är klar med raden.

Calculate Value for Field [Pbe	iov] 🛛 🔀
Fields P_AL P_HCL Pbehov	Calc <u>u</u> late <u>C</u> lose
SOM 🔽 Type Number	<u>H</u> elp
[Pbehov] = (- 2.3 * [P_AL]) + (37.25 -	(5-6)*2.5));

- Siffran 6 i uttrycket ovan är skördenivån i ton/ha. Om man har tillgång till skördedata från en GPS-tröska i en kolumn i tabellen hade man kunnat ersätta den siffran med data från den kolumnen
- 10. Tryck på Calculate när du är klar.

Du är nu egentligen klar med din behovsberäkning och kan använda PrecisionWizard för att räkna över P-behovet till en styrfil i FarmSiteMate. Dock finns en risk att man med denna beräkningsfunktion räknar ut ett negativt behov, d v s så att det blir minustal i behovskolumnen i vissa lägen. Därför är det bäst att kontrollera så att värdena ser riktiga ut Det kan räcka med att titta på lite sammanfattande statstik över behovskolumnen:

🗶 Christine GIS		
Statistics for field Pbel	hov	
Sum: Count: Mean: Maximum: Minimum: Range: Variace: Standard deviation:	562.00000000 32 17.56250000 28.0000000 5.0000000 23.00000000 36.44758065 6.03718317	
le la	<u>0</u> K	

11. Kontrollera de beräknade värdena för markkarteringspunkterna genom att klicka en gång på fältnamnet Pbehov och i menyn som kommer upp välja Statistic.

Här kan vi se att medelbehovet är 17,5 kg/ha, medan min-behovet är 5 kg/ha och max-behovet är 28 kg/ha.

Inga orimliga eller negativa tal den här gången alltså. Om man råkar ut för negativa tal kan man korrigera dessa enligt instruktioner på nästa sida.

Korrigera negativa behovsvärden

Den här sidan kan användas då man vid statistikkontrollen vid punkt 11 ser att det förekommer negativa behovsvärden. Detta kan t ex vara fallet vid höga P-AL-tal. När man gör behovsberäkningen enligt den formel som användes ovan resulterar det då i negativa P-behov. Ett sätt att hantera detta är att sätta de negativa värdena till 0. Samma princip kan tillämpas om man t.ex. inte vill sprida någon P vid P-AL-tal > 10. Här beskrivs hur man kan gå till väga.

Application Project Table Edit Field Window Help Image: Solidamples.cri Image: Solidamples
Implementation Implementation Implementation Implementation Implementation
Image: Serie Seri
X Y PH P_AL P_HCL K_AL K_HCL MG_AL CU_HCL SOM Pbehov Views 1 166 18.2 62 7.6 64 4.9 2.5 3.2 -2 Tables 1 166 12.0 58 6.8 48 2.9 3.5 1.5 12 1 166 12.0 58 6.6 83 2.9 4.0 1.9 21 1 166 10.9 50 6.6 41 2.9 4.0 2.1 1.5 1 166 10.9 60 8.4 56 2.9 4.0 2.1 1.5 1 166 10.5 64 5.1 30 2.5 Höga P-AL-tal som ger upphov till ett negativt P- 1 166 10.9 58 6.9 52 4.5 behov 1 166 12.1 62 8.1 85 7.9 4.1 4.7 2.0 1 166
Solisamples.cri X Y PH P.AL P.HCL K.AL K.HCL MG.AL CU.HCL SOM Pbehov Image: Solisamples.cri 166 18.2 62 7.6 64 4.9 2.5 3.2 -2 Tables 166 12.0 58 6.8 48 2.9 3.5 1.5 12 166 166 166 166. 63 58 9.5 98 4.9 4.0 2.3 25 166 166 1.0.5 6.6 64 4.9 2.5 3.5 1.5 12 166 1.0.5 6.6 6.6 41 2.9 4.0 2.1 15 166 10.5 64 5.1 30 2.5 Höga P-AL-tal som ger upphov till ett negativt P- 166 10.9 58 6.9 52 4.5 behov 166 11.9 61 9.8 134 7.9 4.1 4.6 2.0 20 166 8.8 64 9.9 98 4.1 4.6 2.0 20
X Y PH P_AL P_HCL K_AL CU_HCL SOM Pbehov Image: Stripts
Image: Seripts Image
Imb. 1.6 166 120 58 6.8 48 2.9 3.5 1.5 12 Scripts 166 6.3 58 9.5 98 4.9 4.0 2.3 25 166 6.3 58 9.5 98 4.9 4.0 2.3 25 166 1.0.9 60 8.4 56 3.7 4.0 2.1 15 166 10.9 60 8.4 56 3.7 4.0 2.1 15 166 12.4 68 6.6 41 2.9 4.9 4.0 2.1 15 166 10.9 58 6.9 52 3.5 Höga P-AL-tal som ger upphov till ett negativt P- 166 12.1 62 8.1 85 4.5 5 5 166 12.1 62 8.1 85 4.5 5 5 166 12.1 62 8.1 85 4.5 5 5 166 8.8
20003 166 6.3 58 9.5 98 4.0 2.3 2.5 166 8.0 55 6.6 83 2.9 4.0 1.9 21 166 10.9 60 8.4 56 63 2.9 4.0 1.9 21 166 10.9 60 8.4 56 41 20 21 1.5 166 10.5 64 5.1 30 2.5 Höga P-AL-tal som ger upphov till ett negativt P- 166 12.1 62 8.1 85 4.5 4.5 4.5 166 12.1 62 8.1 85 4.5 4.5 4.6 2.0 20 166 11.9 61 9.8 134 7.9 4.1 4.6 2.0 20 166 8.8 59 7.9 84 4.1 4.6 2.0 20 166 8.8 59 7.9 84 4.1 4.7 2.1 20
166 0.0 55 6.0 63 2.9 4.0 2.1 21 166 10.9 60 8.4 56 3.7 4.0 2.1 15 166 10.9 60 8.4 56 41 20 Höga P-AL-tal som ger upphov till ett negativt P- 166 10.5 64 5.1 30 2.5 Höga P-AL-tal som ger upphov till ett negativt P- 166 12.1 62 8.1 85 7.9 behov 166 11.9 61 9.8 134 7.9 behov 166 8.8 59 7.9 84 4.1 4.6 2.0 20 166 8.8 59 7.9 84 4.1 4.7 21 20 166 8.8 59 7.9 84 4.1 4.7 20 166 8.8 59 7.9 84 4.1 4.7 2.0 166 8.9 59 7.9 5.1 2.7 <td< th=""></td<>
1 1
166 10.5 64 5.1 30 2.5 Höga P-AL-tal som ger upphov till ett negativt P- 166 10.9 58 6.9 52 5.7 4.5 behov 166 12.1 62 8.1 85 4.5 behov 166 12.1 62 8.1 85 4.5 behov 166 11.9 61 9.8 134 7.9 4.1 4.6 2.0 20 166 166. 8.8 64 9.9 98 4.1 4.7 2.1 20 166 21.5 73 7.2 57 4.0 4.8 2.1 -10 166 9.0 64 11.3 137 7.0 5.1 2.7 19 166 6.9 54 9.8 133 9.2 5.2 1.5 24
166 10.9 58 6.9 52 4.5 166 12.1 62 8.1 85 4.5 166 12.1 62 8.1 85 4.5 166 11.9 61 9.8 134 7.9 166 8.8 64 9.9 98 4.1 4.6 2.0 20 166 8.8 59 7.9 84 4.1 4.7 2.1 20 166 8.8 59 7.9 84 4.1 4.7 2.1 20 166 9.0 64 11.3 137 7.0 5.1 2.7 19 166 6.9 54 9.8 133 9.2 5.2 1.5 24
▶ 166 12.1 62 8.1 85 4.5 behov ▶ 166 11.9 61 9.8 134 7.9 4.1 4.6 2.0 20 ▶ 166 8.8 64 9.9 98 4.1 4.6 2.0 20 ▶ 166 8.8 59 7.9 84 √4.1 4.7 2.1 20 ▶ 166 21.5 73 7.2 57 4.0 4.8 2.1 -10 ▶ 166 9.0 64 11.3 137 7.0 5.1 2.7 19 ▶ 166 6.9 54 9.8 133 9.2 5.2 1.5 24
1 166 11.9 61 9.8 134 7.9 1 166 8.8 64 9.9 9.1 4.1 4.6 2.0 20 1 166 8.8 59 7.9 84 4.1 4.7 2.1 20 1 166 8.8 59 7.9 84 4.1 4.7 2.1 20 1 166 8.8 59 7.2 57 4.0 4.8 2.1 -10 1 166 9.0 64 11.3 137 7.0 5.1 2.7 19 1 166 6.9 54 9.8 133 9.2 5.2 1.5 24
1 166 8.8 64 9.9 98 4.1 4.6 2.0 20 1 166 8.8 59 7.9 84 4.1 4.7 2.1 20 1 166 8.8 59 7.9 84 4.1 4.7 2.1 20 1 166 9.0 64 11.3 137 7.0 5.1 2.7 19 1 166 6.9 54 9.8 133 9.2 5.2 1.5 24
▶ 166 8.8 59 7.9 84< 4.1 4.7 2.1 20 ▶ 166 21.5 73 7.2 57 4.0 4.8 2.1 -10 ▶ 166 9.0 64 11.3 137 7.0 5.1 2.7 19 ▶ 166 6.9 54 9.8 133 9.2 5.2 1.5 24
166 21.5 73 7.2 57 4.0 4.8 2.1 -10 166 9.0 64 11.3 137 7.0 5.1 2.7 19 166 6.9 54 9.8 133 9.2 5.2 1.5 24
166 9.0 64 11.3 137 7.0 5.1 2.7 19 166 6.9 54 9.8 133 9.2 5.2 1.5 24
166 6.9 54 9.8 133 9.2 5.2 1.5 24
Query Builder 32 2.5 5.4 1.3 11
59 3.5 5.5 2.0 16
Fields C Values C Fields 115 5.4 5.8 1.8 20
K_AL 173 5.0 5.7 2.3 2.3
P HCL < 12 PHCL 191 15.8 6.4 4.5 19
Pbehov 161 9.3 6.8 2.4 21
PH Show All Values 153 6.6 7.3 2.5 23
Sum ビ <= Unique Values 245 14.7 7.6 3.3 18
256 17.1 7.8 3.5 17
New Set Add to Set Select From Set Close 144 5.1 8.4 2.1 19
97 3.8 8.6 2.3 7

A. Först ska vi välj alla rader i tabellen där det finns ett negativt P-behov. Det gör man genom att öppna fönstret Query builder genom att klicka på knappen med hammare och frågetecken. I Query builder, klicka på Pbehov i listan över kolumner (*Fields*). Tryck sedan på knappen < och skriv sedan in 0 i rutan under Values (se ovan). Tryck sedan på knappen New Set (med *Set* menas här en samling valda rader). De valda raderna blir då gula som visas i figuren ovan.

B. Sedan öppnar vi fönstret Calculate (hur då? - jo på samma sätt som gjordes tidigare vid punkt 8 ovan). I Calculate-fönstret knappar vi in Pbehov= 0; och trycker på Calculate.

Då räknas alla valda raders P-behov om till 0, och korrigering är klar.

C. Avsluta operationen med att välja bort urvalet genom att klicka på knappen som betyder - *Select None*.

D. Kontrollera hur det gått genom att använda statistikfunktionen på samma sätt som vid punkt 11.

Fields	
	Calc <u>u</u> late
K_HCL -	Close
P_AL	
Туре	<u>H</u> elp
,	